Partner switching stabilizes cooperation in coevolutionary prisoner's dilemma

F. Fu, T Wu, and L. Wang
Physical Review E 79, 036101, 2009.

Previous studies suggest that cooperation prevails when individuals can switch their interaction partners quickly. However, it is still unclear how quickly individuals should switch adverse partners to maximize cooperation. To address this issue, we propose a simple model of coevolutionary prisoner's dilemma in which individuals are allowed to either adjust their strategies or switch their defective partners. Interestingly, we find that, depending on the game parameter, there is an optimal tendency of switching adverse partnerships that maximizes the fraction of cooperators in the population. We confirm that the stabilization of cooperation by partner switching remains effective under some situations, where either normalized or accumulated payoff is used in strategy updating, and where either only cooperators or all individuals are privileged to sever disadvantageous partners. We also provide an extended pair approximation to study the coevolutionary dynamics. Our results may be helpful in understanding the role of partner switching in the stabilization of cooperation in the real world.

This paper in PRE

Materials on this page may be the property of the authors and/or journals named.